首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83049篇
  免费   3343篇
  国内免费   4565篇
  2023年   654篇
  2022年   851篇
  2021年   2211篇
  2020年   1286篇
  2019年   1726篇
  2018年   1387篇
  2017年   1206篇
  2016年   1831篇
  2015年   3749篇
  2014年   7189篇
  2013年   6824篇
  2012年   5486篇
  2011年   6291篇
  2010年   4574篇
  2009年   4350篇
  2008年   4513篇
  2007年   4875篇
  2006年   3459篇
  2005年   3152篇
  2004年   2255篇
  2003年   1943篇
  2002年   1643篇
  2001年   1251篇
  2000年   1103篇
  1999年   1068篇
  1998年   989篇
  1997年   758篇
  1996年   827篇
  1995年   1000篇
  1994年   860篇
  1993年   810篇
  1992年   752篇
  1991年   708篇
  1990年   630篇
  1989年   558篇
  1988年   566篇
  1987年   475篇
  1986年   390篇
  1985年   610篇
  1984年   929篇
  1983年   576篇
  1982年   752篇
  1981年   733篇
  1980年   541篇
  1979年   543篇
  1978年   336篇
  1977年   345篇
  1976年   328篇
  1974年   236篇
  1973年   238篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
 DNA sequences of both 5′ and 3′ regions of the plastid ndhF gene were generated in order to study the position of Patrinia and Nardostachys, to check the potential paraphyletic nature of Patrinieae, and to evaluate the possible link between the tribe and Linnaeaceae. Parsimony analysis showed very strong support for Patrinia as sister to all members of Valerianaceae (including Nardostachys) and indicated the paraphyletic nature of the tribe Patrinieae. Additionally, trees were constructed from available rbcL data separately and supplemented with ndhF sequences. Topologies of these combined cladograms are in agreement with the ndhF phylogeny, suggesting that the traditionally circumscribed Patrinieae can no longer be recognized but must be considered as part of a basal grade in Valerianaceae. Parsimony analysis based on a morphological data set supported a monophyletic Patrinieae; combination with the molecular data showed a paraphyletic Patrinieae. Furthermore, the possible link between Patrinieae and Linnaeaceae is evaluated. Received July 12, 2001 Accepted February 25, 2002  相似文献   
22.
 In this study we construct a phylogenetic hypothesis for the relatedness among disjunct subspecies of Cyclamen repandum and its two allopatric congeners, C. creticum and C. balearicum in order to examine the evolutionary divergence of currently isolated populations across the western Mediterranean. The most parsimonious phylogenetic tree obtained from sequencing the cpDNA trnL (UAA) intron suggests a major phylogeographic divide in southern Greece between two clades. The first clade comprises samples of C. repandum subsp. peloponnesiacum (from the Peloponnese) and C. creticum (from Crete). The second comprises samples of C. repandum subsp. repandum (from Croatia, Italy, southern France, Corsica, Sardinia and Sicily), C. repandum subsp. rhodense (from Rhodes and Kos) and C. balearicum (from the Balearic Islands and southern France). These data suggest that C. creticum has evolved in allopatry from C. repandum subsp. peloponnesiacum and that C. balearicum and C. repandum ssp. rhodense have diverged from C. repandum subsp. repandum at its western and eastern distribution limits. At one small site on Corsica, a population of C. repandum may have introgressed with relictual populations of C. balearicum. These divergence patterns illustrate how a phylogenetic perspective can be used to better understand the evolution of endemism in the Mediterranean flora. Received February 19, 2001 Accepted August 22, 2001  相似文献   
23.
The responses to ionizing radiation and other genotoxic environmental stresses are complex and are regulated by a number of overlapping molecular pathways. One such stress signaling pathway involves p53, which regulates the expression of over 100 genes already identified. It is also becoming increasingly apparent that the pattern of stress gene expression has some cell type specificity. It may be possible to exploit these differences in stress gene responsiveness as molecular markers through the use of a combined informatics and functional genomics approach. The techniques of microarray analysis potentially offer the opportunity to monitor changes in gene expression across the entire set of expressed genes in a cell or organism. As an initial step in the development of a functional genomics approach to stress gene analysis, we have recently demonstrated the utility of cDNA microarray hybridization to measure radiation-stress gene responses and identified a number of previously unknown radiation-regulated genes. The responses of some of these genes to DNA-damaging agents vary widely in cell lines from different tissues of origin and different genetic backgrounds. While this again highlights the importance of a cellular context to genotoxic stress responses, it also raises the prospect of expression-profiling of cell lines, tissues, and tumors. Such profiles may have a predictive value if they can define regions of ‘expression space’ that correlate with important endpoints, such as response to cancer therapy regimens, or identification of exposures to environmental toxins.  相似文献   
24.
A tailed bacteriophage, φMR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1–150] and the lysozyme (aa 401–624) domains but not the linker domain (aa 151–400) caused efficient lysis of S . aureus . Immunoelectron microscopy localized gp61 to the tail tip of the φMR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of φMR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with φMR11 was also lysed by both proteins. Staphylococcus aureus strains on which φMR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   
25.
26.
The Parkinson disease protein α-synuclein is N-terminally acetylated, but most in vitro studies have been performed using unacetylated α-synuclein. Binding to lipid membranes is considered key to the still poorly understood function of α-synuclein. We report the effects of N-terminal acetylation on α-synuclein binding to lipid vesicles of different composition and curvature and to micelles composed of the detergents β-octyl-glucoside (BOG) and SDS. In the presence of SDS, N-terminal acetylation results in a slightly increased helicity for the N-terminal ∼10 residues of the protein, likely due to the stabilization of N-terminal fraying through the formation of a helix cap motif. In the presence of BOG, a detergent used in previous isolations of helical oligomeric forms of α-synuclein, the N-terminally acetylated protein adopts a novel conformation in which the N-terminal ∼30 residues bind the detergent micelle in a partly helical conformation, whereas the remainder of the protein remains unbound and disordered. Binding of α-synuclein to lipid vesicles with high negative charge content is essentially unaffected by N-terminal acetylation irrespective of curvature, but binding to vesicles of lower negative charge content is increased, with stronger binding observed for vesicles with higher curvature. Thus, the naturally occurring N-terminally acetylated form of α-synuclein exhibits stabilized helicity at its N terminus and increased affinity for lipid vesicles similar to synaptic vesicles, a binding target of the protein in vivo. Furthermore, the novel BOG-bound state of N-terminally acetylated α-synuclein may serve as a model of partly helical membrane-bound intermediates with a role in α-synuclein function and dysfunction.  相似文献   
27.
Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor.  相似文献   
28.
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.  相似文献   
29.
Tenascin-C (TNC), an extracellular matrix glycoprotein, plays a pivotal role in tumor growth. However, the mechanism whereby TNC affects tumor biology remains unclear. To investigate the exact role of TNC in primary tumor growth, a mouse mammary tumor cell line, GLMT1, was first developed. Subsequently, global gene expression in GLMT1-derived tumors was compared between wild-type (WT) and TNC-knockout (TNKO) mice. Tumors in WT mice were significantly larger than those in TNKO mice. DNA microarray analysis revealed 447 up and 667 downregulated in the tumors inoculated into TNKO mice as compared to tumors in WT mice. Validation by quantitative gene expression analysis showed that Tnc, Cxcl1, Cxcl2, and Cxcr2 were significantly upregulated in WT mice. We hypothesize that TNC stimulates the CXCL1/2-CXCR2 pathway involved in cancer cell proliferation.  相似文献   
30.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号